Mercari Price Prediction
- Task: Build an algorithm that automatically suggests the right product prices.
- Data: User-inputted text descriptions of their products, including details like product category name, brand name, and item condition.
import warnings
warnings.filterwarnings("ignore")
import time
import numpy as np
import pandas as pd
import pickle
import xgboost
from scipy import sparse
import xgboost
from sklearn import preprocessing
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import train_test_split
Import Data
print ('Importing Data')
current_t = time.time()
train_data = pd.read_table('data/train.tsv')
test_data = pd.read_table('data/test.tsv')
print ('Getting features and labels')
current_t = time.time()
def get_feature_label(data):
# split features and labels
train_features = data.drop(['price'],axis=1)
### log transform
train_labels = data.price
train_labels[train_labels==0]=0.01
train_labels = np.log(train_labels)
return train_features,train_labels
train_features,train_labels=get_feature_label(train_data)
nrow_train = train_features.shape[0]
tt_combine = pd.concat([train_features,test_data],axis = 0)
Feature Engineering
Categorical data
print ('Converting categorical var to numeric')
current_t = time.time()
def category(data):
cat = data.category_name.str.split('/', expand = True)
data["main_cat"] = cat[0]
data["subcat1"] = cat[1]
data["subcat2"] = cat[2]
try:
data["subcat3"] = cat[3]
except:
data["subcat3"] = np.nan
try:
data["subcat4"] = cat[4]
except:
data["subcat4"] = np.nan
category(tt_combine)
print ('Handling missing data')
current_t = time.time()
def missing_data(data, _value = 'None'):
# Handle missing data
for col in data.columns:
data[col].fillna(_value,inplace=True)
missing_data(tt_combine)
print("Coding category data")
le = preprocessing.LabelEncoder()
def cat_to_num(data):
suf="_le"
for col in ['brand_name','main_cat','subcat1','subcat2','subcat3','subcat4']:
data[col+suf] = le.fit_transform(data[col])
print("{} is transformed to {}".format(col,col+suf))
cat_to_num(tt_combine)
enc = preprocessing.OneHotEncoder()
cat = enc.fit_transform(tt_combine[['main_cat_le','subcat1_le','subcat2_le','subcat3_le','subcat4_le']])
print ('Getting Length of item discription')
tt_combine['Length_of_item_description']=tt_combine['item_description'].apply(len)
print ("Creating numeric Features")
def numeric_to_features(data):
numeric_features = data[['shipping','item_condition_id','Length_of_item_description','brand_name_le']]
return numeric_features
numeric_features = numeric_to_features(tt_combine)
print ('Dimension of numeric_features'+str(numeric_features.shape))
print("Categorical data transformed. Time elapsed: " + str(int(time.time()-current_t )) + "s")
Converting categorical var to numeric
Handling missing data
Coding category data
brand_name is transformed to brand_name_le
main_cat is transformed to main_cat_le
subcat1 is transformed to subcat1_le
subcat2 is transformed to subcat2_le
subcat3 is transformed to subcat3_le
subcat4 is transformed to subcat4_le
Getting Length of item discription
Creating numeric Features
Dimension of numeric_features(2175894, 4)
Categorical data transformed. Time elapsed: 33s
Text Feature
# Combining Text
current_t = time.time()
def text_process(data):
# Process text
# make item_description and name lower case
text = list(data.apply(lambda x:'%s %s' %(x['item_description'],x['name']), axis=1))
return text
text =text_process(tt_combine)
print("Text data combined. Time elapsed: " + str(int(time.time()-current_t )) + "s")
# 'Tfidf'
current_t = time.time()
tfidf = TfidfVectorizer(ngram_range=(1,3), stop_words = 'english',max_features = 5000)
text_features = tfidf.fit_transform(text)
print ('Dimension of text_features'+str(text_features.shape))
print("Tfidf completed. Time elapsed: " + str(int(time.time()-current_t )) + "s")
Text data combined. Time elapsed: 64s
Dimension of text_features(2175894, 5000)
Tfidf completed. Time elapsed: 1853s
print ("Stacking features")
# Stacker for sparse data
final_features = sparse.hstack((numeric_features,text_features,cat)).tocsr()
print ('Dimension of final_features'+str(final_features.shape))
train_final_features = final_features[:nrow_train]
test_final_features = final_features[nrow_train:]
print("Data Ready. Time elapsed: " + str(int(time.time()-current_t )) + "s")
Stacking features
Dimension of final_features(2175894, 6022)
Data Ready. Time elapsed: 1886s
# save the features
pickle.dump(train_final_features,open('train_features.pkl', "bw"))
pickle.dump(test_final_features,open('test_features.pkl', "bw"))
pickle.dump(train_labels,open('train_labels.pkl', "bw"))
Pick and Tune the Algorithms
An algorithm may be highly sensitive to some of its features. The choose of good parameters may have a dominant effect on the algorithm performance.
In this study, we use GridSearchCV to fine tune the algorithm. I start with default parameters and level it up and down. Based on the GridSearchCV function I will adjust the parameters again. For example, if the GridSearchCV chooses the smallest value for the parameter, I will add a smaller number in the search list.
Load the data
train_final_features = pickle.load(open('train_features.pkl','br'))
test_final_features = pickle.load(open('test_features.pkl','br'))
train_labels = pickle.load(open('train_labels.pkl','br'))
X = (train_final_features)
Y = (train_labels)
current_t = time.time()
xgb = xgboost.XGBRegressor(subsample=0.8,learning_rate=0.5)
param_grid = { "n_estimators" : [300,500,800],
"max_depth" : [10,15,20], #17-11
"min_child_weight" : [1,11],
"gamma":[0,0.2,0.5],
}
CV_xgb = GridSearchCV(estimator=xgb, param_grid=param_grid,verbose=1)
X = (train_final_features)
Y = (train_labels)
CV_xgb.fit(X,Y)
print(CV_xgb.best_params_,CV_xgb.best_score_)
print("Modeling complete. Time elapsed: " + str(int(time.time()-current_t)) + "s")
xgb = CV_xgb.best_params_
Initiating grid search
Fitting 3 folds for each of 54 candidates, totalling 162 fits
Test
# vectorized error calc
def rmsle(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y)-np.log1p(y0), 2)))
# test
def test_reg(reg, features, labels):
features_train, features_test, labels_train, labels_test = train_test_split(\
features, labels, test_size=0.8, random_state=0)
### fit the classifier using training set, and test on test set
reg.fit(features_train, (labels_train))
y_true = labels_test
y_pred = (reg.predict(features_test))
y_pred = np.exp(pred_label)
jag=rmsle(y_true,y_pred)
print(jag)
test_reg(xgb, train_final_features, train_labels)
Save the results
outfile_name = 'submit.csv'
pred_label = xgb.predict(test_final_features)
pred_label = np.exp(pred_label)
pred_label = pd.DataFrame(np.array(pred_label), columns = ['price'])
pred_label.index.name = 'test_id'
pred_label.to_csv(outfile_name, encoding='utf-8')
Modeling done!